Semiregular and strongly irregular boundary points for p-harmonic functions on unbounded sets in metric spaces
نویسندگان
چکیده
The trichotomy between regular, semiregular, and strongly irregular boundary points for $p$-harmonic functions is obtained unbounded open sets in complete metric spaces with a doubling measure supporting $p$-Poincar\'e inequality, $1<p<\infty$. We show that these are local properties. also deduce several characterizations of semiregular points. In particular, characterized by means capacity, measures, removability, semibarriers.
منابع مشابه
Contractive gauge functions in strongly orthogonal metric spaces
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
متن کاملDIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملA regularity classification of boundary points for p-harmonic functions and quasiminimizers
In this paper it is shown that irregular boundary points for p-harmonic functions as well as for quasiminimizers can be divided into semiregular and strongly irregular points with vastly different boundary behaviour. This division is emphasized by a large number of characterizations of semiregular points. The results hold in complete metric spaces equipped with a doubling measure supporting a P...
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کاملCoincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces
The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Collectanea Mathematica
سال: 2021
ISSN: ['2038-4815', '0010-0757']
DOI: https://doi.org/10.1007/s13348-021-00317-6